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Abstract

This paper presents a novel method for the automated diagnosis of the de-
generative intervertebral disc disease in midsagittal MR images. The ap-
proach is based on combining distinct disc features under a machine learning
framework. The discs in the lumbar MR images are first localized and seg-
mented. Then, intensity, shape, context, and texture features of the discs
are extracted with various techniques. A Support Vector Machine classifier is
applied to classify the discs as normal or degenerated. The method is tested
and validated on a clinical lumbar spine dataset containing 102 subjects and
the results are comparable to the state of the art.

Keywords: Degenerative disc disease, machine learning, intervertebral disc,
herniation, desiccation, degeneration, computer aided diagnosis

1. Introduction

The intervertebral discs are structures between the adjacent vertebrae
which absorb stress and shock during the body movements and prevent the
vertebrae from grinding against one another. An intervertebral disc is com-

∗Corresponding Author
Email addresses: abetul.oktay@medeniyet.edu.tr (Ayse Betul Oktay),

albayrak@bilmuh.gyte.edu.tr (Nur Banu Albayrak), akgul@bilmuh.gyte.edu.tr
(Yusuf Sinan Akgul)

Preprint submitted to Computerized Medical Imaging and Graphics April 2, 2014

Manuscript

http://ees.elsevier.com/cmig/viewRCResults.aspx?pdf=1&docID=2871&rev=1&fileID=131054&msid={8F7DCB05-8C4F-4312-A0C5-6F767F3B0236}


Page 2 of 22

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

posed of two parts: the nucleus pulposus and the annulus fibrosis. The
nucleus pulposus is the jelly-like elastic center of the disc and it has a high
water content. The annulus fibrosis, consisting of collagen fibers, is the outer
shell and it encloses the nucleus pulposus.

There may be pathologies at the intervertebral discs. For example, the
annulus fibrosis may be injured because of several factors like aging, trauma,
mechanical loading, etc., and tears may occur. Nucleus pulposus may lose
its elastic content by leaking through the tear and it may dry up. Then,
it collapses and cannot act as a shock absorber. This causes low back pain
which is one of the most common health problems. In the United States,
nearly 50 billion dollars is spent annually for the evaluation and treatment
of low back pain [1, 2]. A Computer Aided Diagnosis (CAD) system for
intervertebral disc diseases would provide quick screening and might also
detect the abnormalities that a radiologist missed due to lack of time [3].

In this paper, we propose a CAD system for the intervertebral disc dis-
eases for the lumbar region of the spine where the low back pain most
commonly occurs [4]. The lumbar region of the human spine, contain-
ing 5 vertebrae v = {L1, L2, L3, L4, L5} and the intervertebral discs d =
{T12 − L1, L1 − L2, L2 − L3, L3 − L4, L4 − L5, L5 − S1}, is the portion
of the spine where pain is generally felt and pathologies occur [4]. A T2-
weighted MR image of the lumbar spine is shown in Figure 1-(a).

According to the nomenclature and classification of lumbar disc pathol-
ogy document [5], the discs are classified as: normal, congenital/development
variant, degenerative lesion, infection, neoplasia, and morphologic variant.
The discs may be categorized into one or more diagnostic classes because
multiple pathologies may occur at the same time. In this study, we concen-
trate on the following classes:

Normal: The intervertebral discs are classified as normal if there is no mor-
phological, degenerative, developmental, or adaptive changes.

Degenerative/traumatic lesion: The annular tear, herniation including
protrusion/extrusion, degeneration are considered as degenerative/traumatic
lesion.

Annular tear : It is the separation between annular fibers and avul-
sion of fibers from their vertebral body insertions.

Herniation: The disc material, including nucleus, cartilage, frag-
mented apophyseal bone, and annular tissue, migrates through the an-
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Figure 1: a) A T2-weighted lumbar MR image where the discs and vertebrae are marked.
b) A normal disc, c-d) Discs diagnosed as degenerative disc diseases including desiccation,
herniation, and annular tear.

nular tear and it is called herniation. Herniation is also classified into
subcategories like protrusion and extrusion.

Degeneration: Desiccation (drying out of the water in pulposus),
fibrosis, narrowing of the disc space, diffuse bulging of the annulus
beyond the disc space, and extensive fissuring are types of degeneration.
Degeneration may happen because of aging, trauma, and annular tears.

Magnetic Resonance (MR) imaging is generally used for the diagnosis of
disc pathologies in clinical practice. The normal discs are ellipse-shaped and
bright in the T2-weighted MR images, while the degenerated and herniated
discs are dark and have arbitrary shapes (Figure 1(b)-(d)).

We propose a CAD system that automatically diagnoses the degenerative
disc disease in the lumbar intervertebral discs at the mid-sagittal 2D MR
images. In order to make the diagnosis, our system considers many aspects of
the discs including the intensity values, shapes, texture, and context. These
aspects are combined under a machine learning framework.

The system has 3 basic steps: First, the intervertebral discs are auto-
matically detected and labeled with our previous method [6, 7]. Then, the
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Disc labelingInput image Discsegmentat ionwithAAM Feature ext ract ion SVMclassif ier
T raining set

Planar shapeIntensityContextTextureShape
T12GL1,normalL5GS1,degenerated

Feature extract ionPlanar shapeIntensityContextTextureShape
Figure 2: The flowchart of the proposed system.

discs are segmented with Active Appearance Models (AAM) [8]. Third, dif-
ferent types of image features are extracted with various methods and they
are trained/tested with Support Vector Machines (SVM). Figure 2 shows
the basic steps of our system, which is evaluated on a dataset that includes
clinical MR images of 102 subjects.

Our system has several contributions: First, the difference image, which
is calculated by using both T1-weighted and T2-weighted MR images, is
introduced for incorporating intensity information. The difference images
give crucial information about the pathologies and eliminate the problems
caused by imaging artifacts. In addition, we propose an automatic initializa-
tion system for the AAM using the windows detected for disc localization.
The system considers different types of features like intensity, texture, whole
shape, and context together for evaluating the disc pathology. To the best
of our knowledge, this is the first study that uses difference images and uses
an automatic initialization system.

The rest of paper is organized as follows: In Section 2, related work
is presented. The disc labeling and segmentation processes are described in
Section 3.1 and 3.2, respectively. Section 3.3 includes the extraction of shape,
texture, intensity, and context information. The learning and training phase
of the system is presented in Section 3.4. Section 4 includes the experiments
and the validation of the method. Finally, we provide the concluding remarks
in Section 5.
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2. Related Work

In the literature, there are many studies for detection [9, 10], labeling
[11, 12], and segmentation [13, 14] of the vertebrae and the intervertebral
discs. However, the number of studies for the CAD of degenerative disc
diseases is limited. In addition, these methods were tested on small datasets.

Chwialkowski et al. [15] presented an intensity based method for detect-
ing the intervertebral discs and analyze the correlation between the inten-
sity distribution and disc abnormality. Tsai et al. [16] employed B spline
curves to approximate the normal disc boundary and the extracted convex
and concave features determined the herniation ratio on transverse sections.
Michopoulou et al. [17] presented a texture based characterization system
for cervical intervertebral disc degeneration from sagittal MR images with a
Least Squares Minimum Distance classifier.

Alomari et al. [18] proposed a probabilistic model for detecting abnor-
mal discs from T2-weighted images using Gibbs distribution. They modeled
the abnormal disc appearance, location, and the context information about
distance with Gaussian models. In [19], a similar system for the diagnosis
of desiccation which uses only the appearance and distance information was
developed. In these studies the shape of the discs were ignored. [20] pro-
posed a method for the diagnosis of herniation that segments the discs with
a gradient vector flow active contour model and used a Bayesian-based clas-
sifier with a Gibbs distribution. However, the whole disc shape was not fully
utilized; only the minor and major axis of the segmented disc shape were
used as shape information.

Ghosh et al. [21] presented a majority voting system for the lumbar herni-
ation diagnosis that uses intensity, planar shape features, and texture features
extracted by Gray level co-occurrence matrix. The system was tested on a
dataset containing 35 subjects and the accuracy of the system was 94.86%.
[3] proposed a new system that employs raw intensity features and texture
information (extracted with Gabor filters and LBP) besides the intensity and
planar shape features in [21]. The system was tested on a dataset containing
35 subjects and the accuracy was 98.29%. Hao et al. [22] proposed an ac-
tive learning based degeneration diagnosis system that takes the segmented
disc images as input and uses texture and intensity information for SVM
classification. The system was tested on 27 subjects and achieved over 90%
accuracy on average.

The methods described above mainly concentrated on the intervertebral

5
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disc intensity information. They also use different types of information like
texture, planar shape (width and height of the disc), and distance in order
to evaluate the disc abnormalities. They are tested on smaller data sets and
containing at most 65 subjects [20]. Our method differs from those studies in
that it uses information more effectively about the intervertebral discs and
it is tested on a larger data set containing 102 subjects.

3. Method

3.1. Automatic Disc Localization and Labeling

The labeling of the discs is crucial before the automated diagnosis because
in clinical practice the abnormalities are reported with the disc label. The
lumbar intervertebral discs are labeled by the method of [6, 7].

The method finds the center location and the label of each lumbar disc di
where 1 <= i <= 6. Since a sliding window technique is used, each detected
disc di is tightly surrounded by a window Wdi . The window Wdi is used for
the automatic initialization of the AAM for segmenting the disc di.

The method works as follows:

1. The spinal cord is detected by subtracting T1-weighted MR images
from T2-weighted images and using morphological operations.

2. Pyramidal Histogram of Oriented Gradients (PHOG) and Image Pro-
jection Descriptors are extracted from the MR images with the sliding
window technique.

3. The extracted features are trained and tested with Sequential Minimal
Optimization (SMO). During testing each candidate window is given a
score which shows the probability of including a lumbar disc.

4. The final disc labels are determined by using a graphical model that
uses the score values of SMO and context information like orientation
and distance of discs.

3.2. Disc Segmentation

One of the major problems of the popular segmentation algorithms (e.g.,
snakes, level sets, AAM) is the initialization. Since they are iterative algo-
rithms that use local image information, the initialization affects the seg-
mentation results. We propose a novel automatic initialization method for
segmenting the discs by utilizing the window information extracted in the
disc labeling step.

6
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Input MR image Window Wconta ining L2_L3 Segmented disc L2_L3 Planarshape of L2_ L3
a b c d

Figure 3: a-A target input MR image and the yellow rectangle shows the window W

detected, b-the window W including the disc di. c-Disc di segmented with AAM. d- A
bounding box including the segmented disc di and its major x and y axes.

The outputs of the automatic disc labeling step are the locations (center
points) and labels of the lumbar intervertebral discs di and the windows
Wd = Wd1 , ...,Wd6 containing those discs. The windows Wd provide crucial
information for the segmentation step because they approximately give the
disc boundary and the initial contour is placed into the window. The output
of the AAM is the segmented disc image Sdi where di ∈ d and 1 <= i <= 6.
Note that each intervertebral disc di is trained for segmentation separately
because their shapes are not similar.

Figure 3-a shows an example of lumbar MR image where the detected
window Wd3 is delineated with a yellow rectangle. The window Wd3 shown
in Figure 3-b is used for initialization of the AAM. The output of the seg-
mentation algorithm is shown in Figure 3-c.

We use AAM for segmentation because the intensity and gradient based
algorithms like active contours and snakes may not work properly in the cases
where the disc is dark or has abnormal boundary like desiccation and hernia-
tion. Since the AAM have a shape-based training phase, the abnormal cases
are also learned with the healthy ones and they are successfully segmented.

3.3. Feature Extraction

In clinical practice, the intensity values, shape, context, and height of the
intervertebral discs are evaluated all together for the diagnosis of diseases.
Different from the studies in the literature, we take all of this information
into account and extract various features from the intervertebral disc images
for the automated diagnosis system.

7
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3.3.1. Planar Shape

The planar shape of the discs, indicated by the height and width of the
discs in 2D midsagittal images, is one of the indicators of disc degeneration
[23] because when the disc collapses due to aging and drying out, the height
of the disc decreases [24].

We extract the average width and height of the each disc di using the
segmentation result Sdi . We use the average width, height and their ratio
as the planar shape features. Note that the abnormality detection studies in
the literature [3],[21] use the length of the main axes of the discs instead of
average height and width values. However, the major x and y axes lengths
may not be so much affected in some cases like herniation where only the
part near to the spinal cord has a small length. Therefore, using the average
lengths instead of major axis lengths is a better indicator of the abnormality.
Figure 3-d shows the bounding rectangle and the major x and y axes of the
segmented disc d3.

3.3.2. Intensity

The inner part of the normal intervertebral discs has a high water con-
tent. However, there may be drying or water loss because of desiccation and
herniation. In T2-weighted MR images, the healthy discs with high water
content are very bright and the abnormal discs with low water content are
very dark. Therefore, the T2-weighted MR images are used for diagnosis in
clinical practice. The studies in the literature generally use the raw disc in-
tensity information. However, there may be imaging artifacts or the intensity
values may change because of the calibration of the MR devices. Therefore,
instead of using only the raw intensity values in T2-weighted images, we
propose using the difference image Ddi calculated by

Ddi = T2(Sdi)− T1(Sdi); (1)

where T1 and T2 are the normalized T1-weighted and T2-weighted MR disc
images. The intensity histogram of the difference image Ddi and the mean
of the intensity values at pixels in Ddi are used as the intensity features.

3.3.3. Context

The context information is important in clinical practice because the com-
parison of neighboring discs in terms of intensity provides important infor-
mation about the pathologies. Therefore, we use the intensity information at

8
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the neighboring lumbar intervertebral discs. First, the average, maximum,
and minimum of the average of the intensity values in T2-weighted segmented
disc images except the target disc are determined. Then, they are subtracted
from the mean intensity of the target image as follows

c1 = mean(T2(Sdi))−max(T2(Sdk)),

c2 = mean(T2(Sdi))−min(T2(Sdk)),

c3 = mean(T2(Sdi))−mean(T2(Sdk)),

(2)

where 1 <= k <= 6 and i 6= k. max, min and mean are the functions that
give the maximum, minimum and the average of the mean intensity values
of the neighboring five lumbar discs dk, respectively. The value c1 is high if
the target disc di is darker than the neighboring lumbar discs dk and c2 is
high if di is brighter than dk.

3.3.4. Texture

Texture of the discs contains important information about the disc patholo-
gies. We use Local Binary Patterns (LBP) [25] for extracting the texture
features of the discs. The calculation of LBP for the pixel c with pixel neigh-
borhood containing P sampling points is

LBP (x) =

P−1
∑

i=0

s(gi − gc) ∗ 2
i, (3)

s(n) =

{

1 if n>0,
0 otherwise,

(4)

where gi is the intensity value of the pixel at i. The occurrences of the
LBP features in the disc images Sdi are collected into a histogram and this
histogram is used as the texture descriptor.

3.3.5. Shape Information

The shape of the discs demonstrates the some abnormalities like hernia-
tion. In order to extract the shape information, we use moments for repre-
senting the global characteristics and geometric features of shape. Hu’s mo-
ment invariants [26] are employed as the shape descriptor which are invariant
to rotation, scaling and translation. Hu’s moment invariants H1, H2, ..., H7
are calculated as

9
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H1 = η2,0 + η0,2, (5)

H2 = (η2,0 − η0,2)
2 + 4η21,1, (6)

H3 = (η3,0 − 3η1,2)
2 + (3η2,1 − η0,3)

2 (7)

H4 = (η3,0 + η1,2)
2 + (η2,1 + η0,3)

2 (8)

H5 = (η3,0 − 3η1,2)(η3,0 + η1,2)
[

(η3,0 + η1,2)
2 − 3(η2,1 + η0,3)

2
]

+

(3η2,1 − η0,3)(η2,1 + η0,3)[3η3,0 + η1,2)
2 − (η2,1 + η0,3)

2] (9)

H6 = (η2,0 − η0,2)
[

(η3,0 + η1,2)
2 − (η2,1 + η0,3)

2 + 4η1,1(η3,0 + η1,2)(η2,1 + η0,3)
]

(10)

H7 = (3η2,1 − η0,3)(η3,0 + η1,2)
[

(η3,0 + η1,2)
2 − (3η2,1 + η0,3)

2
]

+

(η3,0 − 3η1,2)(η2,1 + η0,3)
[

(3η3,0 + η1,2)
2 − (η2,1 + η0,3)

2
]

, (11)

where ηp,q is a normalized central moment of order p + q. The 7 moment
values H are used as shape descriptors. The moment values incorporate
knowledge about the global shape and geometric features of the discs.

3.4. Training

The extracted planar shape, intensity, context, texture, and shape fea-
tures are combined with concatenation to obtain the final descriptor. For
training the SVM, we use Sequential Minimal Optimization (SMO) [27] al-
gorithm that contains many optimizations designed to speed up the training
algorithm and convergence under degenerate conditions.

4. Experiments

The system is tested and validated on a clinical MR dataset containing
MR volumes for the spinal lumbar column of 102 subjects. The MR im-
ages are gathered from 3 different devices which are all 1.5T. In the dataset,
there are T1-weighted sagittal, T2-weighted sagittal and T2-weighted ax-
ial acquisition protocols for each subject. The midsagittal (median sagittal
slice) registered T2-weighted and T1-weighted MR images are used for the
experiments.

There are lumbar MR images of 102 subjects in the dataset and there are
totally 102*6=612 lumbar intervertebral discs. 349 of the discs are normal
and 263 of them are diagnosed with degenerative disc disease. The discs are
labeled and diagnosed by a radiologist for the ground truth.

10
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Table 1: The performance metrics of [21], [3], and our method.

Accuracy Sensitivity Specificity
The method of [21] 70.75 75.6 64.3
The method of [3] 86.28 87.4 84.8

Our method 92.81 94.6 89.8

The dataset containing 612 discs is randomly divided into 6 subsets each
containing 102 discs and we performed 6 sub-experiments. In each sub-
experiment, the discs in 5 subsets (102*5=510 discs) are used for training
and the discs in the other subset are tested. So, the training and testing
instances are always distinct and each disc is tested once by the system.

We use accuracy (ACC), specificity (SPE) and sensitivity (SEN) metrics
for performance evaluation which are defined as:

Accuracy = (TP + TN)/(TP + TP + FN + FP ), (12)

Specificity = TN/(TN + FP ), (13)

Sensitivity = TP/(TP + FN), (14)

where TP is the number of true positives, TN is the number of true negatives,
FN is the number of false negatives and FP is the number of false positives.

In order to compare our system with the state of the art, we implement
the methods of [3] and [21] which report their accuracy rate as 98.29% and
94.86% for the dataset containing 35 subjects, respectively. We implement
the systems according to the techniques and parameters given in the papers.
The training and test instances and the number of sub-experiments are same
with our method for a fair comparison. Note that, although the methods of [3]
and [21] are proposed for herniation diagnosis, they are expected to diagnose
the degenerative disc disease because they use intensity and shape features
that give information about degeneration and annular tear and herniation is
a also type of degenerative disc disease.

The performance of our method, and the methods of [3] and [21] are
shown in Table 1. The accuracy of our method is 92.81%. The accuracy of
the method presented in [21], which uses intensity, texture and planar shape
features, is 70.75%. The accuracy of the method presented in [3] that uses
more texture descriptors and raw intensity features besides the features in
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Table 2: The performance metrics of each individual feature type for the method of [3],
[21] and our method.

Features used in Our Method Features used in [3]
ACC(%) SEN SPE ACC(%) SEN SPE

Intensity (Difference images) 89.54 0.96 0.82 Raw Features 86.44 0.88 0.84
Shape (avg axis) 59.64 0.93 0.14 LBP 70.01 0.80 0.57
Shape(Hu’s) 71.57 0.72 0.71 Gabor 59.64 0.80 0.33
Texture (LBP) 70.10 0.80 0.57 Planar Shape 55.02 1.00 0
Context 73.20 0.83 0.61 Intensity 57.02 1.00 0

GLCM 71.08 0.78 0.62

[21] is 86.28%.
We perform a feature comparison through Receiver Operating Charac-

teric (ROC) curves in Figure 4 and the accuracy rates are given in Table 2.
Figure 4-(a) shows the ROC curves of our system and the ROC curves of the
individual features used in our system. In our system, the intensity features
that use difference images perform well and it is followed by context, shape
and texture features. Figure 4-(b) shows the ROC curves of the features
used in [3]. It is observed that the raw intensity features have the highest
accuracy in [3] and the overall accuracy of [3] is similar to the accuracy of
raw features as reported in [3]. The shape and texture information encoded
by GLCM and LBP features have similar accuracy. The shape and intensity
features have 0 specificity and all of the instances are classified as having no
disease. It indicates that they do not provide sufficient information alone.
Also, our planar shape feature, which uses the average width and height after
segmentation, has higher accuracy than the planar shape feature of [21],[3]
which uses only the ratio of major axis lengths.

The accuracy rate of [3] is higher than [21] as expected because it is an
extended version that uses more information. The results show that in [3]
the texture features extracted with Gabor filters and LBP and raw intensity
features increase the accuracy of the system. The accuracy of our system is
higher than [3] and [21]. This indicates that the information incorporated
with context features, shape descriptors and difference images provides an
important accuracy gain to our system.

Finally, we performed another experiment in order to evaluate perfor-
mance of the difference images. In this experiment, we use all of the features

12
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Figure 4: (a) ROC for our method and individual features, (b) ROC for the method of [3]
and individual features.

(planar shape, context, texture, and shape) except intensity for degenera-
tion diagnosis. The accuracy rate without difference image based features is
84.31% which is lower than the accuracy 92.81% when all features are used.
This experiment show the affectiveness of the difference images in a CAD
system for degenerative disc disease.

Note that the accuracy rates reported in [21] and [3] are slightly different
than the accuracy rates when they are run on our dataset. This may be
caused by several reasons. First, the raw intensity features mostly affect
the accuracy of [21] and [3] and our dataset may have low image quality
compared to their dataset. Also, the dataset of [21] and [3] consists of 35
images and the data variability of cases may be low in their dataset.

5. Conclusions

We present a novel method for the automated diagnosis of degenerative
disc diseases using a machine learning framework. The method first localizes
and segments the intervertebral lumbar discs. Then shape, context, intensity,
and texture information about the discs is extracted with various techniques
and they are learned with SVM.
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We present an effective automated initialization technique by using the
detected windows during localization. In this way, AAM produces successful
segmentation results even in arbitrary shaped discs. The incorporation of in-
tensity information with difference images eliminates the problem of imaging
artifacts. Image moments provide knowledge about the geometrical features
about the disc shape. In addition, context features are employed for making
comparison with the neighboring lumbar intervertebral discs.

The dataset that we use to validate our system includes the clinical lum-
bar MR images of 102 subjects. It is the largest dataset used for evaluation.
We compare our system with the methods of [21, 3] which have the highest
accuracy in the literature. The experimental results show that our system
has 92.8% accuracy which is comparable with the state of the art.
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