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Abstract. Graph cut algorithms are very popular in image segmenta-
tion approaches. However, the detailed parts of the foreground are not
segmented well in graph cut minimization.There are basically two rea-
sons of inadequate segmentations: (i) Data - smoothness relationship of
graph energy. (ii) Shrinking bias which is the bias towards shorter paths.
This paper improves the foreground segmentation by integrating the sta-
tistical significance measure into the graph energy minimization. Signifi-
cance measure changes the relative importance of graph edge weights for
each pixel. Especially at the boundary parts, the data weights take more
significance than the smoothness weights. Since the energy minimization
approach takes into account the significance measure, the minimization
algorithm produces better segmentations at the boundary regions. Exper-
imental results show that the statistical significance measure makes the
graph cut algorithm less prone to bias towards shorter paths and better
at boundary segmentation.

Keywords: Graph Cut Segmentation, Energy Minimization, Shrinking
Bias, Statistical Significance Analysis

1 Introduction

Current state-of-the-art segmentation methods are based on optimization pro-
cedure [1]. One of the popular optimization based methods is graph cut mini-
mization [2]. The graph cut approach models the image segmentation problem
as pixel labeling such that each pixel is assigned to a label which denotes the
segmentation classes. The algorithm first builds a graph G = (V, E). V con-
sists of set of vertices that correspond to the pixel features (e.g. intensity) and
two extra vertices which denote object and background terminals. E consists of
edges which are assigned to a nonnegative weights according to the relationship
between the vertices. After the graph structure is constituted, the optimal label-
ing configuration is found by minimizing an energy functional whose terms are
based on the edge weights of the graph. The standard graph energy functional
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is formulated as,

E(f) =
∑

i∈V

Ed(fi, di) + λ
∑

i,j∈N

Es(fi, fj), (1)

where V are the vertices, fi is the segmentation label, di is the a priori data of
pixel i, and N represents the neighborhood pixels j of pixel i. The first term in
the energy functional is called the data term Ed, which confines the segmenta-
tion labels to be close to the observed image. The second term is used for the
smoothness which confines the neighboring nodes to have similar segmentation
labels. The regularization weight λ balances the relationship between the data
and smoothness terms.

1.1 Motivation

Graph cut algorithms produce successful solutions for the image segmentation
[2–4]. However, the foreground boundary, especially at the detailed parts still
cannot be obtained well in the graph cut minimization. There are basically two
reasons of inadequate segmentations at the boundary regions:

(i) Data-Smoothness Relationship. One of the reasons of the inade-
quate segmentation of graph cut algorithms is due to the energy minimization
approach. The trade off between the data and the smoothness terms should be
well regularized in the energy functional. In order to obtain the boundary of
the foreground accurately, regularization should be small. In Fig 1.b, segmenta-
tion is obtained with a small λ. Small λ segments the objects sharply, however,
it produces noisy solutions (grassy regions). If we increase the λ in order to
obtain a noiseless segmentation, this time we lose the details such as the legs
and the ears of the horses (Fig 1.c). For the optimal segmentation, λ parameter
should be optimal as in Fig 1.d. Even for the optimal segmentation, the detailed
parts of the foreground still cannot be segmented accurately. The main reason
of the inadequate segmentation in energy minimization approach is that the op-
timal regularization parameter for overall segmentation is generally high for the
boundary regions.

(ii) Shrinking Bias. Another reason of the inadequate segmentation of
graph cut minimization is the shrinking bias [5] which is an inherent bias to-
wards shorter paths. The smoothness term in graph-cut methods consists of a
cost summation over the boundary of the segmented regions. A short expen-
sive boundary may cost less than a very long cheap one. Especially at the long
and thin boundaries of objects, the graph cut algorithms may cut the boundary
along the shorter paths which causes inadequate segmentation for those parts.
Figure 2 shows the optimal segmentation for the horse image in Figure 1.a and
illustrates the shrinking bias problem. The green boundary denotes the ground
truth segmentation. However, the graph cut algorithm segments the image along
the red boundary. Note the marked regions on the image. The algorithm seg-
ments the object at the short-cut boundaries instead of long and thin boundary
paths.
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(a) (b) (c) (d)

Fig. 1. The illustration of the trade off between the data and the smoothness terms
of the graph cut minimization. a) Input image. b) Segmentation by a small λ. Less
regularization provides to segment the detailed regions of the foreground such as the
legs parts. c) Segmentation by a large λ. Not only the noisy segmentation but also
the detailed parts of the segmentation is lost. d) Optimal segmentation is still not well
enough at the boundary parts.

Fig. 2. Graph Cut methods may short-cut the foreground along the red borders instead
of following the green borders, because short-expensive boundary may cost less than a
very long cheap one.

1.2 Related Work

Shrinking bias problem of graph cuts is first addressed by Kolmogorov and
Boykov [5]. They define the flux along the boundary and improve the segmen-
tation. Flux knowledge causes stretching at the boundary while the graph cut
algorithm tries to smooth the solution because of the energy minimization. Al-
though the flux integration produces better solutions than the original graph cut
approach, the algorithm cannot be extended to color images, because flux can
be defined only on the grey-level images [6]. Another work which tries to over-
come the inadequate segmentation is geodesic segmentation which avoids the
shrinking bias of the graph cut methods by removing the edge component in the
energy formulation [7]. However this approach cannot localize the object bound-
aries and it is very sensitive to seed placement [8]. Vincente and Kolmogorov [6]
attempt to solve the long and thin object segmentation by adding connectivity
priors. They manually add some additional marks at the endpoints of long-thin
objects and then run the Dijkstra’s algorithms after the graph cut minimization.
Recently, researchers argued that the same λ may not be optimal for all regions
of the image. They proposed different algorithms which spatially change the reg-
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ularization parameter based on the local attributes of the images [9–12]. Since
the regularization weight is decreased at the boundary parts, energy minimiza-
tion cannot over-smooth the thin and long parts of the foreground. Therefore,
the spatially-adaptive methods will produce better segmentation results than
the traditional graph cut algorithms.

In this work, the statistical significance measure is integrated into the energy
minimization approach in order to improve the image segmentation problem.
In traditional statistics, statistical significance measures the randomness of an
outcome. It is previously proposed that the statistical significance can be used
as a comparison measure for the outcomes of different distributions [13, 14]. In
this work, we redefine and modify the idea for the shrinking bias problem and
include additional experiments. The statistical significance measure is included
in the energy minimization approach through the graph structure. We measure
the statistical significance of all weights on the graph. Then we reconstruct the
graph structure by changing the weights with their statistical significance mea-
surements.

2 Statistically Significant Graph Cut Segmentation

2.1 p-value Calculation

Statistical significance is a probability value (p-value) which is the measurement
of randomness. It is used for the hypothesis testing mechanism in statistics. If
the observed outcome of an experiment is statistically significant, this means
that it is unlikely to have occurred by chance, according to the significance level
which is a predetermined threshold probability.

In order to measure the statistical significance of the outcome of an experi-
ment, cumulative probability distribution function of the experiment should be
known. If the distribution of the outcome is a known distribution such as the
exponential distribution, the parameters of this distribution is used to measure
the significance. On the other hand, if the distribution is not known, the possible
outputs of the experiment is used to form the probability distribution. The area
under the probability distribution forms the cumulative distribution function.
The location of the outcome on cumulative distribution determines the statis-
tical significance of the observed outcome. Equation 2 denotes the statistical
significance of the outcome x.

F (x) = P (X <= x) =
x∑
−∞

P (X = x) (2)

P (X = x) is the probability distribution of experiment X, F(x) produces the
p-value of the statistic x. If the obtained p-value is small then it can be said that
an unusual outcome has been obtained.
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2.2 Measuring the significance of edge weights

In this work, we used the significance measure to bring the data and smoothness
energy terms (outcomes) into the same base, which is different from the tradi-
tional usage. We measured the statistical significance of energy terms in terms of
edge weights of the graph structure. In graph cut algorithms, objective function
is constituted of the edge weights. The edges between the terminal and pixel ver-
tices are called t-links whose weights form the data energy term. On the other
hand, the edges between the neighboring pixel vertices are called n-links whose
weights form the smoothness terms of the energy function. The weights of dif-
ferent types of links are determined through different functions such as squared
differences, absolute differences, truncated absolute differences, laplacian zero
crossing or gradient direction. As an example, in the interactive segmentation
of Boykov and Jolly [2], the weights of t-links are based on the marked pixel
histogram, whereas, n-links are the intensity difference between the neighboring
pixels. Note that, data and smoothness terms of the energy formulation have
different functional forms, whereas, graph cut minimization try to minimize the
different functional forms simultaneously through the same objective function.
In this work, we used the significance measure to bring the energy terms on the
common base by expressing the weights in terms of the statistical significance
measure.

In order to measure the statistical significance of data and smoothness terms,
the probability distribution of the terms should be generated. The edge weights
on the graph form the probability distribution of terms. Figure 3 illustrates the
procedure. The weights of the t-links (marked as red color on the graph) form the
probability distribution of data term of the energy function, on the other hand,
the weights of the n-links (marked as blue on the graph) form the probability
distribution of smoothness term. Two sample edge weight is denoted on the
graph by green color. Then we measure the statistical significance of each edge
weight by evaluating the weights on the distributions. t-link weights are evaluated
on the data term distribution; n-link weights are evaluated on the smoothness
distribution. After measuring each weight significance, we reconstruct a new
graph structure in which edge weight is assigned to a significance value.

Equation 3 and Equation 4 formulates the significance measurement.

F (xd) = P (Ed(f, d) <= xd), xd = E(fi, di) (3)

F (xs) = P (Es(f, d) <= xs), xs = E(fi, fj) (4)

where xs is the observed data weight, xs is the observed smoothness weight,
P (Ed(f, d)) denotes the probability distribution of data weights, and P (Es(f, d))
denotes the probability distribution of smoothness weights.

3 Data-Smoothness Weights Relationship

We measure the statistical significance of each term by evaluating the terms
according to the other graph terms. Evaluating the terms on its own distributions
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Fig. 3. Data and smoothness weights are normalized by evaluating weights according
to other data and smoothness weights on the graph. a) A simple graph structure. Data
edges denoted by red color, smoothness edges denoted by blue color. b) Probability
distribution of data terms. c) The probability distribution of the smoothness terms.

and expressing the edge weights by the same measurement have two explicit
advantages:

(i) The significance measure decreases the scale and distribution differences
between the data and smoothness energy terms and bring them on similar base.
Therefore, the tradeoff between the terms would be properly regularized.

(ii) The significance measure for the data weights are determined according
to other data weights on the graph. Similarly, the significance measure for the
smoothness weights are determined according to other smoothness weights on
the graph. It can be interpreted as each weight is normalized relative to other
weights. As an example, if one of the data weight has a high significance among
the other data weights, we can say that data term for that pixel is statistically
more significant than the smoothness term, albeit both terms have equal weight.
Normalization change the relative weights of data and smoothness terms accord-
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ing to their randomness. Rare weights become more important than the normal
weights.

In order to show the relative relationship between data and smoothness
weights of each pixel, we constructed weight maps for both graph structures.
We calculated the relative weight of each pixel i ∈ I of image I using Formula 5.
Then we normalize the weight rates to a fixed range [0-1]. If the weight rate is
close to the 1, this means that smoothness weight is relatively bigger than the
data weight for that pixel. If the smoothness weight increases, pixel get closer to
the red. On the hand, if the weight rate is close to the 0, it can be said that the
data weight is more important for that pixels. We show that type of pixels with
blue. Figure 4.a denotes the weight map of original graph structure, Figure 4.b
denotes the weight map of modified graph structure. Note that data weights at
the boundary part takes more importance than the smoothness weights in the
modified graph structure.

λEs(fi, fj)
Ed(fi, di)

∀i ∈ I (5)
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Fig. 4. Data-Smoothness relationship for the dragonfly image. (a) A sample image.
(b)Smoothness/Data weight rate for each pixel of traditional graph structure. (c)
Smoothness/Data weight rate for each pixel of modified graph structure.

4 Improvement in Shrinking Bias Problem

Statistical significance measurement decreases the smoothness weights along the
boundary as it can be seen in Figure 4. Therefore finding a short expensive
boundary, which may cost less than a very long cheap one become harder.
Figure 5 demonstrates the improvement in shortcutting. The segmentation is
obtained by minimizing the modified graph cut structure whose weights are
calculated by significance measurement. The red contour denotes the short-cut
boundary which is the optimal segmentation of traditional graph structure as
we showed previously in Figure 2. Note that the blue contour is explicitly closer
to the desired boundary.
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Fig. 5. Improvement in Shrinking Bias problem. The blue contour is closer to the
desired boundary than the short-cut boundary.

5 Experimental Results

To quantitatively evaluate the accuracy of the segmentation of the proposed
approach, we applied it to the Berkeley dataset [15]. We obtained optimal seg-
mentation of original graph structure and modified graph structure by comparing
the segmentations by ground truths. Figure 6 displays some segmentations re-
sults of both approaches. Note that the thin and long parts of foreground such
as legs of the dragonfly or wood in the bear image. The proposed approach pro-
duces better solutions at these problematic parts. The percentage errors of the
segmentations are listed on Table 1.

Table 1. Error Rates of the Segmentations in Figure 6

Traditional Graph Structure Modified Graph Structure
Image Optimal Segmentation Error Rate Optimal Segmentation Error Rate

Dragonfly 1.29 % 1.08 %
Eagle 4.34 % 2.99 %
Horse 2.97 % 2.56 %
Bear 4.32 % 3.07 %
Plane 0.83 % 0.70%
Trees 1.74 % 1.01%

6 Discussion

In this paper we have integrated the statistical significance measure into the
graph structure in order to improve the graph cut segmentation approach. We
measured the significance of data and smoothness edge weights according to
other weights. Then we constructed a new graph structure whose edge weights
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Fig. 6. FirstColumn: Image from the Berkeley set [15]. SecondColumn: Optimal seg-
mentation by traditional graph structure. ThirdColumn: Optimal segmentation by
modified graph structure based on statistical significance measurement.
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are the significance measurements. Using the significance measurements instead
of weights can be interpreted as each weight is normalized relative to other
weights. In the new graph structure, the relative weights of data and smooth-
ness edges are changed according to their randomness. Especially at the bound-
ary regions of the foreground, the data weights gets more importance than the
smoothness weights. In another word, the smoothness weights along the bound-
ary is decreased. Therefore, finding a short expensive boundary which may cost
less than a very long cheap one become harder. We demonstrated our algorithm
on several images on Berkeley segmentation set, and showed that our optimal
segmentations are better than the optimal segmentations of traditional graph
cuts.
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