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Abstract

This paper presents a novel system that uses two synchronous optimiza-
tion processes to recover 3D structure from recti�ed stereo image pairs. The
synchronization of the processes are done by energy terms that inform the
optimization processes about the recovered positions of each other. This in-
formation is used to direct the optimizations towards a better direction. The
system is initialization insensitive and it is very robust against local minima.
We performed experiments on real and synthetic images with ground truth
that showed the effectiveness and the robustness of our system. We also
compared our system to other systems for further validation.

1 Introduction
Although the estimation of the 3D structure using stereo is one of the oldest techniques
of Computer Vision, the problem is still being researched intensely by many groups. The
simplicity and availability of the image acquisition hardware, very strong epipolar geo-
metric constraints, naturally inspiring systems such as human vision, and the wide range
of applicability of these systems are a few reasons for the popularity of stereo.

Establishment of the correspondence between stereo image pairs is considered as the
�rst and most important problem of classical stereo analysis[8, 2]. More current tech-
niques take the path of formalizing the stereo problem as the global solution of estimating
the 3D structure directly from the images, e.g., [10, 9, 14]. The formulations are usually
written as one global energy functional that needs to be optimized to produce the desired
3D surface. The optimization of the functionals are generally NP-Hard for most of the
cases in stereo[3]. As a result, some researchers simpli�ed the functionals so that a glob-
ally optimal solution is possible, e.g., using dynamic programming [6][12]. However,
for most cases, it is not possible to simplify the stereo analysis model. Therefore, using
an approximate optimization method became more popular. These methods include[13]
stereo by simulated annealing, graph cuts, gradient descent, genetic algorithms, etc. Al-
though some of these methods produce very good results, optimality is still not satis�ed
and getting closer to optimal results is always desirable.

This paper describes a system that uses two separate optimization processes for the
recovery of 3D surfaces. The optimization processes are based on gradient descent heuris-
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tics, which do not guarantee optimality. However, due to the interaction between the
optimization processes, the overall result of our system is always better than the results
achievable by a single optimization process. The presented idea is applicable to other
heuristic optimization methods that use a global approach.

Our system is not the �rst one to use two optimization processes in synchronization.
Akgul and Kambhamettu [1] used such a system with two deformable meshes. Our sys-
tem introduces a more methodological way of synchronizing the optimization processes
by using an automatic way of changing the amount in�uence between the processes. We
also use a more effective regularization term for the structure smoothness. The result-
ing system is more ef�cient and less sensitive to local minima. Our system requires also
minimal information from the user which makes it more robust against the differences
between images.

The rest of this paper is organized as follows. Section 2 de�nes the energy functional
and its subterms. Section 3 de�nes the details of the optimization process. Section 4
describes the system validation and experiments and we conclude our paper with Section
5.

2 The Energy Functional
The 3D surface to be recovered should be locally smooth and a given 3D reconstructed
point should be projected onto similar image regions on the left and right stereo images.
We express these features in the form of global energy functionals following the classical
regularization method [16]. These energy functionals will produce two discrete valued
disparity functions d1(i, j) and d2(i, j) that will show the results of the two separate but
dependent optimizations. These disparity functions will assign a disparity value for each
element Li j in the left image of the stereo pair. We write the energy functionals as

E(d1) = ∑
i

∑
j

EData(Li j,Ri j−d1(i, j))+λ1ESmth(d1(i, j))+λ2ET nsn(d1(i, j),d2(i, j)) (1)

E(d2) = ∑
i

∑
j

EData(Li j,Ri j−d2(i, j))+λ1ESmth(d2(i, j))+λ2ET nsn(d2(i, j),d1(i, j)) (2)

The data term EData(Li j,Ri j−d1(i, j)) is for satisfying the image similarity requirement.

EData(Li j,Ri j−d1(i, j)) = 1−Corr(Li j,Ri j−d1(i, j)) (3)
Assuming the images are row recti�ed, data term uses the popular normalized cross

correlation, Corr, values between the left(Li j) and right(Ri j+d1(i, j)) image regions. Note
that, for pixel Li j of the left image, the disparity function d1 chooses the pixel Ri j−d1(i, j)
from the right image on the same row. Since the normalized cross correlation produces
values in the range [-1, +1], the EData term would be close zero when the two image re-
gions are very similar. If the images are very dissimilar, it gets close to 2. Our data energy
is robust against any brightness differences between the left and right images because it
is normalized.

The smoothness term of the energy functional makes the resulting disparity functions
smooth both in x and y dimensions. For the smoothness metric ESmth(d1(i, j)), we use the
error of plane �t around the disparity image point d1(i, j). This metric becomes zero for
locally planar regions of the disparity image. Our smoothness term does not allow surface
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discontinuity because it extends the smoothness everywhere in the images. However, for
images with large smooth regions, our system still produces satisfactory results.

It is not very dif�cult to make our system produce discontinuous surfaces natively.
There are a number of popular alternatives such as Potts model, which was �rst used by
Geman et al.[5] for vision.

The tension energy, ET nsn, is for the synchronization of the two optimization pro-
cesses. The main function of the tension term is to make the disparity values of two
functions d1 and d2 get close to each other by pushing the optimization process with the
worse data term towards the other process.

ET nsn(d1(i, j),d2(i, j))= |d1(i, j)−d2(i, j)|EData(Li j,Ri j−d1(i, j))
(

λ3 +2−EData(Li j,Ri j−d2(i, j))
)

,

(4)
where λ3 is the constant tension that pushes the disparity functions together when both

data terms are very high. Note that the tension term is heavily dependent on the data
energy term. If the data term of the optimization is close to zero, then the optimization
is not affected from this term. If the optimization has a high data energy and the other
optimization has the lower data energy, then the tension term will push the optimization
towards the disparity values of the other optimization.

3 Synchronous Energy Optimization
The �nal disparity images of the optimizations of Equation 1 and 2 are the d1 and d2
disparity images that satisfy

min E(d1)
min E(d2)

If the energy functionals de�ned by Equation 1 and 2 are optimized independently
by heuristic methods starting from different initial con�gurations, each would produce a
different disparity map. However, if we optimize them in synchronization with the help
of the tension term, they can be forced to �nd the same surface. The biggest advantage
of such a mechanism is that the overall optimization would localize a much better 3D
position than each of the optimizations can achieve. This advantage comes from the
system feature that can compare the positions of two optimization processes and bias the
optimization direction towards to better position.

Note that in order this idea to work, we need a basic optimization method. For the
current system, we chose the gradient descent algorithm because of its simplicity. In
addition, gradient descent is not a very powerful optimization method for stereo due to its
sensitivity to initial con�gurations and local minima, so a solution using this optimization
method would show the effectiveness of our system.

In classical gradient descent optimization algorithm, we search for a vector position
that satis�es the optimal values of a functional by moving along the directions of the
gradients of the functional. For our case, this vector is the elements of the disparity
images d1 and d2. Since we have two optimization processes, there will be two search
vectors →v1 and →v2.
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→v1 = [. . . ,d1(i, j), . . .]T
→v2 = [. . . ,d2(i, j), . . .]T

We also de�ne two objective functions E1(
→v1) and E2(

→v2) that can take vectors and
produce the energy value for the given vector as de�ned by Equations 1 and 2. We then
de�ne the gradient direction for these vector functions as

∇E1(
→v1) =

[
∂E1(

→v1)

∂ →v1 (1)
,

∂E1(
→v1)

∂ →v1 (2)
, . . .

]T

, (5)

where →v1 (1) is the �rst element of the vector →v1. Note that the number of elements of the
vector →v1 is the same as the number of pixels in the left stereo image.

A similar direction is also de�ned for E2. The gradient directions show the direction
where the value of the function E decreases most. The gradient descent algorithm calcu-
lates these directions repeatedly and takes steps on these directions. This process keeps
changing the disparity vectors →v1 and →v2 until the gradient descent algorithm cannot lower
the overall energies.

Note that classical gradient descent algorithm has serious problems with local minima
and initial position of the vectors →v1 and →v2. These problems are not speci�c to gradient
descent algorithm and we show that our synchronous optimization method can handle
these problems.

The following are the steps of synchronous optimization

1. Set the initial values of the vector →v1 to minimum possible disparity values. This
will make the disparity image d1 a constant image.

2. Set the initial values of the vector →v2 to maximum possible disparity values. Similar
to d1, this will make the disparity image d2 a constant image.

3. Calculate the values of E1(
→v1) and E2(

→v2). Note that the values of E1 depends on
both disparity images d1 and d2 due to the tension term. The same is true for E2.

4. Calculate the gradient directions ∇E1(
→v1) and ∇E2(

→v2) using Equation 5. Move
the vectors →v1 and →v2 on these directions with a step size dependent on the gradient
magnitudes.

5. If the current d1 and d2 images produced by →v1 and →v2 are not the same, then con-
tinue with the step 3 as the next iteration.

The above process is not initialization sensitive because the �rst steps (initialization
steps) are always independent of the input images. The above procedure also eliminates a
considerable amount of problems due to local minima because when the gradient descent
search is stuck due to local minima, it is always possible to compare the position with the
other process to decide if it is a local minima or not.

The biggest difference between the above method and the method of [1] is that we
do not turn the tension term manually on and off. The amount of tension is dynamic
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between the processes, which removes a sensitive parameter from the system and makes
it more robust against variations between images. Another advantage of the dynamic
tension term is the appropriate application of the tension amount depending on the image
sections. The amount of tension is very small if the image areas are very textured and
produce good correlation values. On the other hand, if the image sections are textureless,
then the tension will be higher.

4 Experiments and Validation
In order to verify the system performance, we performed experiments on standard images
from the literature with and without ground truth. We tested the system on many different
images. We will show images where the system works normally as well as images where
our system partially fails.

All the experiments were performed using the same set of system parameters. We
chose a 9x9 correlation window for the data energy term for all experiments. Unless
otherwise stated, we used stereo images from the Middlebury image base[13] for these
experiments.

The �rst experiment is on a baseball stereo image pair[7] without ground truth. De-
spite the depth discontinuities between the baseball and the background, our algorithm
produces visually correct results. Figure 1 shows the original images and the disparity
map produced by our system. The continuous surfaces are recovered nicely but there are
a few visual problems at image positions with occlusions.

(a) (b)

(c)

Figure 1: (a) Left baseball image (b) Right baseball image (c) The disparity map produced
by our system.
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It is interesting to see the two optimization processes in action, which is shown in
Figure 2. Please see the supplementary material movie baseball for an animation of this
�gure. As the �gure shows, one process starts from a constant disparity map d1 with
very low values, hence its initial map is a dark image. The second process starts from a
constant disparity map d2 with high values, hence its initial map is a bright image (Figure
2-a). When the optimizations start, the �rst process disparity values get higher and the
values for the second one get lower(Figure 2 b-g). The process continues until the both
disparity images become the same (Figure 2-h). Note that if one of the processes �nds
the correct disparity values, that position is kept and the other process disparity values are
pulled to the found value. Note also that for regions where there is not much texture, the
smoothness drives the optimizations.

(c)

(a)

(g)

(e)

(b)

(d)

(f)

(h)

Figure 2: (a) The initial disparity maps of two processes. The dark image is for the �rst
process with the minimum possible disparity values. The bright image is for the second
process with the maximum possible disparity values. (b-g) The disparity maps of each
process while the synchronized optimizations continue. (h) The �nal disparity maps of
both processes. Note that both disparity maps are the same. Please see the supplementary
material movie baseball for an animation of this �gure.

The second example is the synthetic corridor image[4] with ground truth. This image
has a number of depth discontinuities and large textureless sections. Figure 3 shows
the left image, the ground truth, and the recovered disparity from our system. Visual
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inspection of this image indicates that other than the immediate regions around the depth
discontinuities, the disparities are correct.

(c)(b)(a)

Figure 3: (a) The original left image of corridor. (b) The ground truth disparity map. (c)
The disparity map recovered by our system.

We compared our disparity results from the corridor image with the ground truth dis-
parity map. We also compared our results with a number of other stereo algorithm perfor-
mances. Table 1 shows the comparison. The numbers for the other methods are by Li and
Zucker[11], which were produced by comparison package of Scharstein and Szeliski[13].
The other algorithms are standard SSD, stereo for slanted surfaces (SSS)[11], graph cuts
(GC)[3], and belief propagation (BPA and BPS)[15].

Disparity Error SSD SSS GC BPA BPS Our
RMS error 1.3 0.35 0.65 0.75 0.62 0.53
% error ±1 14.0 3.4 7.4 10.1 5.4 7.2
% error ±0.5 32.5 11.6 26.4 30.3 24.3 18.6

Table 1: Comparison of our algorithm with the ground truth and other algorithms on
corridor image.

Note that the performance numbers are better than some of the other methods despite
the existence of discontinuities. We are especially encouraged with the good RMS num-
bers because they show that even for problem areas, our algorithm produces values closer
to the optimal.

In order to show the failure cases for our system, we chose an image (sawtooth im-
age) with very strong and dominant depth discontinuities. Figure 4 shows the image, the
ground truth, and the estimated disparity from our system.

Table 2 shows the comparison of our system on sawtooth image of Figure 4. Due
to dominance of the depth discontinuities, our error percentage numbers are higher than
other methods. However, our RMS numbers are still in the acceptable range. Please see
the supplementary material movie sawtooth for an animation of this �gure. This ani-
mation visually shows that the depth discontinuities are actually handled properly in the
early phases of the optimization. However, when the smoothness term becomes dominant
in the later phases of the optimization, the depth values around the discontinuities start
getting worse.

Finally, �gure 5 shows another example with smooth surfaces and discontinuities
where our system performs favorably. Please see the supplementary material movie venus
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(a) (b) (c)

Figure 4: (a) The original left image of sawtooh. (b) The ground truth disparity map. (c)
The disparity map recovered by our system. Please see the supplementary material movie
sawtooth for an animation of this �gure.

Disparity Error SSD SSS GC BPA BPS Our
RMS error 1.65 1.30 1.42 1.67 1.45 1.59
% error +/-1 8.7 4.5 3.9 4.5 4.7 10.6

Table 2: Comparison of our algorithm with the ground truth and other algorithms on
corridor image.

for an animation of this �gure. The video shows the effect of smoothness after most of
the disparities become the same.

(a) (b) (c)

Figure 5: (a) The original left image of venus. (b) The ground truth disparity map. (c)
The disparity map recovered by our system. Please see the supplementary material movie
venus for an animation of this �gure.

5 Conclusions
We presented a novel system for the recovery of the 3D structures from stereo image
pairs. The system de�nes an energy functional which is optimized by two synchronous
optimization processes. The optimization processes always feed information to each other
so that they know which search direction might produce better results. The �nal recovered
3D structure turns out to be much more accurate than what a single optimization process
can achieve.
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The system addressed many problems common to approximate optimization methods
such as sensitivity to initializations and local minima. Although currently the system
uses the gradient descent methods as the main optimization method, more sophisticated
optimization systems can be plugged in for a more robust solution.

We validated the system by running experiments on real and synthetic images. The
experiments showed us the robustness of our system against local minima and impos-
ing constraints on regions where surface texture is not available. Overall, we are very
encouraged with the results.

The current limitations of the system includes the inability to recover surfaces with
very dense discontinuities. However, it is not very dif�cult to extend this system with a
discontinuity preserving model. It should be noted that, even with a continuous smooth-
ness energy, our system can perform as good as some of the systems in the literature that
use discontinuity preserving models. Another problem with the current system is the han-
dling of occlusions. Our system does not consider occlusions, which is not very realistic.
The experimental results show that the occluded areas are handled by the smoothness
terms, which produces acceptable results most of the time. However, in order to handle
occlusions more effectively, we need to address this issue explicitly.
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